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In most  solid state reactions the reaction velocity can be described as a product  of 
two functions K(T) and f(1 -- e) where T is the temperature and  e the degree of con- 
version of the solid reactant.  The physical interpretation of these functions is discussed, 
and  a systematic method is described by which f(1 -- c0 of a reaction is identified from 
its kinetic data. K(T) and the reaction mechanism are then determined. This method 
has been successfully applied to analyse the kinetics of the thermal decomposition of 
silver azide. 

In a solid-state reaction, the reaction velocity is given by - d /d t  (1 - e) = d, 
where e = e(t) is the fraction of the solid reactant which has reacted by time t. 
Its kinetics can be solved by determining d as a function of temperature and the 
global amount of reactant left. This phenomenological knowledge is a necessary, 
though not sufficient, condition for elucidating the reaction mechanism. It is 
necessary to formulate the reaction velocity in terms of the global variable e, 
because there is a continuous collapse of structure in the reactant. Furthermore, 
the local concentration of the reactant varies throughout the reaction volume and 
cannot be used as a state variable. In fact, unlike the case of a homogeneous re- 
action in the liquid or gaseous phase, there is no real 'reaction order' with respect 
to any reactant in a reaction involving condensed matter whose mechanism is 
usually of the heterogeneous type. 

If the reaction proceeds isothermally, it is observed empirically that (e, t), 
curves corresponding to different temperatures T are isomorphic to one another, 
at least within a range of T, i.e., by a linear scale change in t, different curves can be: 
superimposed [1]. It follows that ~ is a separable function: 

(0~)isotherma 1 = K(T)f(1 - ~). (l} 

H e r e f ( l  - c 0 may change in different ranges of T or c~. For  every f(1 - c0, there 
corresponds a single K(T). It should be noted that experimental data may be ade- 
quately analysed by (1) only if it has been ensured that the temperature distribution 
in the sample is sufficiently uniform and constant. Furthermore, the theoretical 
significance of K(T)and f(1 - c~)determined from the data should always be exam- 
ined with regard tog the class of mechanisms they indicate. A question of con- 
istency arises in this respect. In the literature, coherent and integrated accounts 
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of the physical (as contrasted with the formal) meanings of K(T) and J( l  - ~) 
are not easily found. A discussion on their interpretations therefore forms the 
first part of this paper. In the second part we propose an efficient method of de- 
termining, with confidence, both f(1 - e) and K(T) from ~ and ~(t) data. The inter- 
pretation off(1 - e) is the essential link in this method between the experimental 
data and the functions. 

Physical interpretations 

The .function f (1 - ~) 

Solid-state reactions are complex processes which preceed in several stages. 
These can be the delocalization or transfer of  electrons in chemical bonds (in the 
case of non-metals), the diffusion of atoms, free radicals, or ions, the desorption 
of product molecules when they are in the gaseous phase, the heat transfer to the 
reaction zone in the case of endothermic reactions, and the formation of a new solid 
structure (crystalline or amorphous) if one of the products is in the solid phase. 
The last step may often be further differentiated into nucleation, growth of nuclei 
(at velocities which depend on sizes of nuclei) [1] and sometimes the collapse of 
the lattice from a transitory one to the equilibrium structure [2]. Irrespective 
of  the details of reaction mechanisms, however, under a given set of circumstances 
(T, ct, sample history etc.) one of the stages will be the slowest. It then acts as the 
rate limiting step of the reaction, and it will determine the kinetics i.e., the rate 
law in (1). 

Further, a solid-state reaction has, in contrast to a homogeneous reaction whose 
progress is independent of spatial coordinates, an additional controlling factor, 
namely topochemistry. This refers to the geometrical shape of the solid reactant 
and, in different cases, to its free surface area, its defect structure, the thickness 
of the product layer if solid, or to the product-reactant boundary, etc. 

The function f(1 - c0 reflects the nature of the rate-limiting step and the topo- 
chemistry of the reaction. It may accordingly depend on certain sample conditions, 
such as whether the sample has been pre-irradiated or bleached, and whether 
the sample is in the form of a powder, or a large single-crystal of a different shape 
from the crystallites. It will vary in several ranges of T if in each of them a different 
elementary step becomes rate-limiting, as occurs in the decomposition of potassium 
azide [3]. At a given temperature, it may also change in different ranges of ~, 
due to the switching of the rate-limiting step or topochemical changes. This hap- 
pens, for instance, in the oxidation of zirconium [4] and in most decomposition 
processes [1]. An extreme case is the decomposition of ammonium perchlorate 
which, in the two temperature regimes below and above 620K, has entirely dif- 
ferent reaction mechanisms and in fact yields different reaction products [5]. 
In such cases there may be competing paths for the chemical reaction or it may 
in fact be followed by another chemical reaction whose 'onset temperature' is 
higher. In all possibilities, however, f(1 - ~) should be the same for a given 
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independent of  T (within a range) if  it is to have more than only an empirical 
significance. 

In Table 1 we have collected together the more common forms o f f (1  - ~) 
which have been used in the literature, and the corresponding integrated forms 

t 

S dt ~/f(1 - e) = d~/f(1 - e) - F(~). Note that F(e) = K (t - to) if the range 
0 0 

of e for which it becomes applicable starts at e = e(t0). Also, for simplicity here- 
after we write K for K(T). 

In many reactions, such as most deccml;ositions and dehydrations, the rate- 
limiting step takes place at the interface between diffcrcnt phases as in sublimation. 
The speed at which the interface moves into tI~c reactant is (at a given temperature) 
then either a constant, or a unique function of the interfacial area. This area 
therefore, f rom the kinetic point of view, plays the same role as that of  con- 
centration in homogeneous reactions. I f  the speed is constant, then the theoretical 
significance of f (1  - c 0 is clear: it gives the area expressed as a fraction of the 
original area at e = 0. This is the case of  a reaction controlled by the movement  
of a coherent phase-boundary and listed as F, G and H in Table 1. In this situation, 
the explicit form of f(1 - c 0 depends on the geometry of the reacting system, 
though generally it is a decreasing function of c~ or at most constant. 

I f  the reaction consists of  the formation of compact nuclei of a solid product 
at localized places in the reactant followed by their relatively rapid growth, then, 
to express the total interfacial area,f(1 - c 0 is derived from the laws of nucleation 
and growth. This is the situation when the reaction is autocatalytic [13]: reactant 
molecules at a reactant-product interface react in preference to those at a reactant- 
'vacuum'  surface. The preference is due to the existence of  microstrains in the 
reactant at the interface, or due to the electrochemical potential of  the product 
phase when the rate-limiting step is a redox process. The various possible forms of 
f(1 - c 0 for an autocatalytic reaction are listed in Table 1, A to E. Note that they 
have the general form f(1 - c 0 = c~P(1 - ~)q. In A, B and E, q is zero and e 
increases monotonically with e. Such a situation is most unlikely to last up to 
e = 1. These types off(1 - e) therefore may apply only to the acceleratory part,  
if  it is present in the e-time curve and which will usually be followed by a decay 
part. In C and D, q is non-zero and these types give sigmoid-shaped curves. The 
inflexion point occurs at , '  = p/(p + q), as can be seen at once from the condition 

= 0. It  is thus kinetically feasible for them to fit the complete experimental curve. 
There are, however, physical grounds to consider that even they should be used 
to analyze only the acceleratory period [1 ]. 

In other reactions the rate-limiting step is not confined to, or does not only 
occur at, the reactant surface. For  instance, in the unimolecular-decay type of  
reaction, all molecules whether on the surface or in the bulk have an equal proba- 
bility per unit time of reacting. This is the case when the change from the re- 
actant to the solid product phase involves little re-arrangement of  the reactant 
atoms. The reaction has homogeneous mechanism and thus a true reaction 
order of  one, i.e.f(1 - c 0 = 1 - e. Many decomposition reactions tend to this 
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Table 1 

The c o m m o n  types of  solid-state react ion 

R e a c t i o n  

Autocatalyt ic  

Phase -boundary  cont ro l led  decay 

Power- law nucleat ion and  g rowth  at  cons tan t  speed:  A 
Linear  branching  chain of  nuclei,  no  overlap during g rowth :  B 
Branclf ing-chain nucleat ion,  in ter ference  during growth :  C 
R a n d o m  nucleat ion,  g rowth  accompan ied  by ingest ion o f  nuclei :  D 
Ins tan taneous  nucleat ion,  s ize-dependent  g rowth :  E 

1-d imens ionah  F 
2-dimensional  : G 
3-dimensional  : H 

Unimolecular  decay: I 

Dif fus ion-control led  
1-dimensional  : J 
2-dimensional  : K 
3-dimensional  : L 

A 
B 
C 

D 

E 

F 
G 
H 

I 

J 
K 
L 

./'(1 - -  a )  = dqK F(~) = Kt m i) R e f e r e n c e  

o~l--lln 

~ ( 1 -  ~) 

{ - i n  ( 1 -  ~)}1 -11n  ( 1 -  a)----- 
"" C~1-1] n (1 - -  00 b 
ctalz 

1 
( 1 -  cO ls2 
( 1 -  ~)2/a 

1/~ 
1/{- -  In (1 -- ~)} 
1I{(1 - -  ~ ) - 2 / a _  (1 - -  oO - x , 3 }  ----- 

3(1- ~<)~/~/{-ln ( 1 -  ~)}; 
1/{(1 - ~)-~;a_ l} _~ 
_ 3 / { - - l n  (1 -- cO} 

Hgl ln 

In ~ - -  C(T) 
--In{-- ( 1 -  1 / c O } -  

- G  

n{-- ln (1 - -  ~ ) } l t n  
2(%W 2 --  ~-1/2) 

1.27n 
ii) 

ii) 

t/ 
il) 

c~ 1.24 
2 { 1 -  ( 1 -  ~)~J~} 1.11 
3 { 1 -  ( 1 -  c@sa} 1.07 

-- In (1 -- c0 1 

cd/2 { 0.62 
c~ + (1 - -  c0 In (1 --  c01 0.57 
3 { 1 -  ( 1 -  ~)~'~}~12 ! 0.54 

3 { 1 -  ( 1 -  c0~/a}12- 0.57 

t 

[6] 
[7] 
[8] 

[9, 10] im 
[11] 

[3] 

[12] 

[13] 

[14] 
[]41 
[15] iv) 

[16] iv> 

i) Log { - - I n  (1 - -  c0} "~ Cons tan t  + m log t, 0.15 < c~ < 0.5 
ii) Plot  o f  L.H.S.  in i) against  log t distinctively concave upwards ;  Co and  % are  cons tan ts  

while C(T) is funct ion  of  t empera tu re  
iii) b = 0.774, 0.700, 0.664, 0.642 . . . . .  0.556 for  n = 2, 3, 4, 5 . . . .  oo 
iv) Al ternat ive  der ivat ions;  we have obta ined  the  approx imate  forms  of  f(1 - -  c0 by ex- 

panding  into series (1 - -  c0 -2ja and  (1 - -  c0 -~/3 to second  o rder  in ~: result ing e r ror  "~ c~/6 
( < 1 0 ~  for ~ < 0.8) 
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limit at high e values. Another example is when the rate-limiting step is the 
migration of product ions along the dislocation network to form additional 
growth nuclei at dislocation nodes [17]. This leads t o f ( l  - e) = e, the same form 
as for branching nuclei [7]. The slow process of 'ageing' in some explosives when 
they are stored at room temperature may be by such a nucleus-chain mechanism. 
A third category consists of reactions controlled by the diffusion of reactants 
across a product layer which is solid. The diffusion may proceed uniformly through 
the bulk of the layer and is thus structure-insensitive, or preferentially along its 
gross lattice imperfections arising from product-reactant mismatch. In the case 
of uniform diffusion, the speed at which the product-reactant interface moves is 
a function only of the product thickness (and temperature), and the appropriate 
forms off(1 - e) are included in Table 1 as J, K and L. The oxidation of metals 
often follows diffusion-controlled kinetics; in sheet form these tarnish according 
to the parabolic law e2cct. Exceptions aret hose metals in Groups Ia and IIa of 
the Periodic Table. Excluding beryllium, they all form oxide layers which are 
porous, so that the atoms of the metal do not have to diffuse through a coherent 
layer before coming into contact with oxygen. 

The function K(T) 

It is almost always the case that the temperature-dependent part of (1) can be 
represented successfully by: - 

K(T) =K~  exp (-E/kT) (2) 

in which k is Boltzmann's constant, and the macro-kinetic constants E and Koo 
do not depend on T (within the range), though usually they take on different values 
when f(1 - ~) changes. 

If  it is established that the reaction is rate-limited by a diffusion or migration 
process, the interpretation of K(T) is complicated, but obviously it is proportional 
to the corresponding transport~coefficient, which in general is an exponential func- 
tion of T. An over-simplified theory for the situation of uniform one-dimensional 
diffusion gives K(T) = (S/Vn)2D(T), where S is the interfacial area, V 0 the initial 
volume of the reactant, and D(T) the diffusion coefficient (cf. [19]). 

For a single-solid-reactant reaction which is controlled by a surface process, 
on the other hand, the simple theory of Shannon [18] is often successful. This 
theory is a generalization of the Po lany i -Wigner  equation. Assuming the existence 
of some activated complex, which as a transition state can be treated in thermo- 
dynamic equilibrium with the reactant, he related the pre-exponential factor K~o 
to the rotational and other internal degrees of  freedom of a reactant molecule 
in addition to the vibrational ones. Following Shannon we can set: - 

K~o = (kT/h) exp (ASa/k) 6So/V o (3) 

and exp (-E/kT) = exp ( -  AHf/kT). (4) 
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Here the mean-frequency factor kT/h containing Planck's constant is usually in 
the region of 1013 s -1 (see below), AS* and AH ~ are respectively the entropy and the 
enthalpy of formation of the transition complex, 5 is the thickness of one mono- 
layer and 110 the initial volume of the reactant, and S0f(1 - ~) gives the free sur- 
face or the product-reactant interface area when the degree of conversion is ~. 
(Strictly speaking, it has been assumed that the reaction proceeds isobarically). 

Note that in this interpretation the empirical quantity K~ contains the surface- 
-to-volume ratio and so depends on the sample geometry. Also, it is apparently 
proportional to T. (In gas reactions, the collision theory gives Ko~ oc T~.) In our 
opinion, however, if the vibrational modes are being considered then only at low 
temperatures will the peak distribution of phonon frequencies lie at kT/h. For 
most substances (with the exceptions of Be, Cr and diamond) the Debye tempera- 
ture 0 o is less than 500K, so that the frequency factor should stay as kOD/h <~ 1013s -1 
for all likely experimental temperatures. 

The factor exp(ASS/k) may alternatively be written in terms of partition func- 
tions as QS/Q, which can be determined from spectroscopic data [20]. In most 
cases AS s cannot be larger than the reactant entropy of melting, and exp(ASS/k) 
comes out normally between unity and 10 ~. Occasionally exp (ASS/k) is found to 
be less than unity, as is the steric factor in gas reactions. Such a negative value of 
AS ~ means that the activated complex is more ordered than the reactant (e.g. 
[21]). Experiments on some decomposition reactions have given K which are ab- 
normally high in comparison to the theoretical values of (3). Hypotheses put for- 
ward to explain such discrepancies include co-operative activation [22], proton- 
delocalization [23], and a mobile layer of molecules on the reactant surface [18]. 

Kinetic analysis 
Current practice 

In determining the kinetics one wishes to find K| E, and f(1 - ~) or equiv- 
alently F(c 0 so that the reaction velocity can be predicted at any given T and ~. 
This is commonly done by analyzing a set of c~(t) or equivalently ~(t) values ob- 
tained by monitoring a number of samples reacting isothermally at a number of 
temperatures. The consistency of the K~ and E values with f(1 - ~) should as far 
as possible be assessed, and correlated with, for instance, microscopy. 

A quick method of calculating E was used by Haynes and Young [24]. Consider 
a set of (c~, t) curves which have been found to be isomorphic. For any two curves 
(cq, ti) and (c% tz) corresponding to temperatures T 1 and T 2 respectively, one can 
write 

F(cq) = tlKoo exp ( -E/kT1)  (5) 

F(ez) = tzKo~ exp ( -E /kT2) .  

By choosing points corresponding to the same c~ on the two curves so that F(el) = 
= F(e2), E can be evaluated by plotting In t vs. 1/T. On the other hand, to deter- 
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mine F(c0 often a trial-and-error method is resorted to. Conflicting forms of the 
function have sometimes been asserted by several authors for the same material, 
like NH4CIO~ (see [25]) and KMnO ~ (see [26]). 

A conventional way of superimposing isothermal curves is to convert them into 
'reduced-time plots' by individually scaling their t-axis with the factor 1/zi, where 
zi is the time when e = 0.5 on the i-th curve. In this way K(Ti) is absorbed into 
each scale factor and all (c~, t) = (0.5, 1) points coalesce, while other ~(t) points 
may be plotted out to see if the curves are indeed isomorphic. Sharp et al. [27] 
tabulate the theoretical values of e against t / z  for some of the F(e) shown in Table 1. 
They propose that by comparing experimental data with such master values the 
correct F(e) can be identified. 

The above method may, however, result in ambiguity due to a number of as- 
pects. Experimental data contain random errors, but no simple statistical analysis 
can be applied to the identification criterion it employs because no straight-line 
graphs are involved. Additionally, a general problem for all isothermal experi- 
ments is the zero-time uncertainty. The finite time taken by the sample to reach 
the designated temperature may be negligible relative to z, yet may affect the com- 
parison with the tabulated values [28]. Moreover, F(e) may change in different 
regimes of the e(t) curves, as mentioned earlier. 

A new m e t h o d  

Here we suggest a step-by-step approach to determine F(~). It was noted by 
Hancock and Sharp [28] that for many forms of F(c 0, the plot of log [ - ln(1  - ~)] 
vs. log t is almost linear if c~ is restricted to between 0.15 and 0.5. Using a com- 
puter program to generate artificial values and their log-ln plots, we have found 
this true for all the theoretical forms listed in Table 1, with the exception of B, 
C and E. The slope in each case is listed there under the Column 'm'. 

Obviously a log-ln plot is not very sensitive. If we were to rely solely on it to 
discriminate between the functional forms of F(~), the experimental data would 
have to be of the highest quality. A slightly more sensitive way is to plot [ - ln (1  - 
_ ~)]l/m vs. t, but then m can only be obtained iteratively. Fortunately, m does 
differ significantly between different groups of F(~), and the final discrimination 
is easily achieved by a further graphical step. There are three possible situations 
for this second step: - 

1. m > 2 or log-ln concave upwards 

It will be seen from Table 1 that this situation suggests an autocatalytic reaction, 
for which ~ = Ka~ - 00q for certain p and q. From the experimental data of 0~ 
and c~, one can then do a least-squares fit on the graph of A log ~/A log c~ against 
A log(1 - cOlA log ~, and find p from the y-intercept and q from the slope. Here 
A log ~ - log 0~(tl) - log 0i(t2), etc. 
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For an ~ expression of this form, one has p(1 - ~') = q~', where c( is the value 
at maximum & Using this relation to reduce the number of unknown parameters 
to one, one can use a simpler graph to determine p and q [26]. However, the cal- 
culated values of p and q are then subject to the accuracy of c( and, more funda- 
mentally, the possibility that p and q may change f rom one range of c~ to another 
is not allowed for. As mentioned above, those types off(1  - e) in which q = 0 
represent the acceleratory period which, in general should be followed by a decay 
period governed by a different form off (1  - ~). 

2. m - 1  

The reaction is either phase-boundary controlled or unimolecular, and 0~ = 
= K(1 - cO s, as seen in Table 1. One then draws the graph of log ~ against 
log (1 - c~) to find r, the apparent reaction order. 

3. m ~ - 0 . 5  

The reaction is diffusion controlled (see Table 1). One has to test separately 
whether c~(t) is parabolic (the diffusion is in one dimension), or - ~ ln(1 - c0 = 
= K(1 - cO s with s = 0 (two dimensions) or s = 1/3 (three dimensions). 

The correlation coefficient in the least-squares fit serves, by measuring the li- 
nearity of the ~ graph, as a quantitative indication of the confidence to be attached 
to the identified form off(1 - c 0. It may be that p and q, r, or s change once or 
twice as the reaction proceeds from beginning to completion, but the c2 graphs 
will show it by displaying several linear segments. I f  however, a part  of the graph 
say from (~1, tl) to (c~2, t2) is non-linear, then F(c~) has changed to a form in another 
group. The first step should then be repeated for that part:  log [ - l n ( 1  - [c~ + ~1]/ 
/[1 - ~1])] is plotted v s .  log(t - / 1 )  for c~ between c~ 1 + 0.15(c~ 2 - ~1) and ~1 + 0.5 
(e2 - cq), followed by one of the above three alternative procedures. On the other 
hand, if a good fit is found with values o f p  and q, r, or s that are not in Table 1, 
the experimenter should assess whether theoretical justification can be provided. 
In this way new rate laws may be identified. 

Confirmation is carried out by plotting the selected functional form or forms 
on top of the experimental curve. A slight misfit in the very early part  (~  1 
minute, depending on the sample size and the environment) may be attributed 
to thermal lag-time and ignored. The 0~ graphs give K, and from a set of K values 
at different temperatures K| and E can be determined. Note that the determination 
of these macro-kinetic constants depends on the form of f(1 - c~) chosen, as it 
should be. 

It  may be added that we see it an immediate possibility to have full automation 
in the acquisition and processing of data in thermal analysis experiments. The 
hardware can be under the control of microprocessors or dedicated minicomputers, 
and their output would go into a computer or the same minicomputer. A com- 
puter program can then reduce the data to e(t) or 0i(t) curves, and further analyse 
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A s 
L 

% : ~, + .t4.+++'f +4-t- z o.s - ~, s4o ~-+++ ++++++ _+.~_++~ 
, o .s-  ~ - ~ o ~  +++ _++++ ++++-~ 

_ 0.7_-:- s  % +++* ~4 -+ 
: .~ 3uu~ q-,1 ++ Z +++T3 

~ 0"6---=-0.5 -- ~ 4BO ~- .-r+++.,~+++ ++++++ 

0.4 ~ 460L +++'~-++..,_..~++-F 

0.3 ~ k / ,:.i.+++++'~++++4.:_ 
0.2 ~ ~4~ +++++* %. 

- 42oF- ++*~+* ~++**~, 
o.1 ~- F . . I+*  - ~ % ,  

--  ~400 ,I~ i'll . . . .  I1 , , , ,It, . . . . . . .  I . . . . .  , , , , ? P ~ I r H T , t + i  
50 100 150 200 250 300 

Time~min 
t l r r l l  l + + i ; l , , + , [ t t , i l t t t t + , 1 , t l ,  I ~  

0 0.5 1,0 1.5 2.0 2.5 3.0 3.5 

Fig. l. Decomposition of a ;single crystal of AgNa at 551 K; l. Thermogravimetric data, 
2. a-time curve, 3. 1 -- (1 -- ~)t,2 vs. time. 

" 0.5 
c 

i 

0.3 

0.1 

// 
/ 

I r f , , I 
0.3 05 I 

t/T 

Fig.  2. L o g - l n  p l o t  

the curves to identify f (1  - e) and so calculate Koo and E, according to the method  
proposed  here. Nevertheless ,  the physical  interpretation o f  these results by the 
experimenter remains the crucial step. 

The method  has been applied to investigate the kinetics o f  s low thermal  de- 
compos i t i on  in silver azide single crystals using thermogravimetric  data. Curve 1 
in Fig. 1 is a typical experimental  curve o f  weight loss against t ime t, and Curve 2 
is the corresponding reduced-t ime plot  o f  c( vs. t /v .  In Fig. 2 we plot  l o g [ - l n ( 1  - 

J. Thermal Anal. 17, 1979 



368 T A N G ,  C H A U D H R I :  I S O T H E R M A L  K I N E T I C  D A T A  

b 10-'* 

I0 -a 

0.01 

~..,--f = 

I r I t l p l l [  i i i i I I I F ]  
03 1 

Fig. 3. & graph 

- c0] vs .  log(t/r) for 0.15 < e < 0.5, obtaining essentially a linear graph of slope 
~1.1. The decomposition of AgN3 therefore appears to be phase-boundary 
controlled or unimolecular. Accordingly, we draw in Fig. 3 the graph of log ~ vs .  

log(1 - e). It shows that between 1 - e = 1 to 0.1, ~ = K(1 - e)~ with the 
correlation coefficient among the data points better than +0.9. Indeed, the plot 
of 1 - (1 - e)~ vs .  t (Curve 3, Fig. 1) is a good straight line, with a correlation 
coefficient of +0.99 for 0.1 < c~ < 0.9. The decomposition is thus of the contract- 
ing cylinder type. We have also obtained K~o and E, and found that their inter- 
pretation in terms of Eqs (3) and (4) leads to a plausible physical picture. Further 
details are given in a separate paper devoted to the mechanism of the thermal de- 
composition of AgNa [30]. 

In a second paper [29], we discuss the analysis of dynamic kinetic data which 
are easily obtained from modern thermoanalytical instruments. 

Conclusion 

We have described a systematic method for determining the kinetics of solid- 
state reactions from isothermal data. It may be stressed once more that whenever 
possible a judgement should then be made on the consistency of the K~o and E 
values with the implication of f(1 - c0 regarding the likely mechanism of the 
reaction. 
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R~SUMr~ -- Pour la plupart des r6actions en phase solide, la vitesse de la r6action peut 6tre 
d6crite comme le produit de deux fonctions K(T) etf(1 -- ~), off T est la temp6rature et c~ le 
degr6 de conversion du solide en r6action. On discute l'interpr6tation de ces fonctions et on 
d6crit une m6thode syst6matique par laquelle on identifie f(1 -- ct) d'tme r6action b. partir 
de ses donndes cin&iques. K(T) et le m6canisme de la r6action sont d6termin6s ensuite. On a 
appliqu6 cette mdthode avec succ~s ~t l'analyse de la cin6tique de la d6composition thermique 
de l 'azoture d'argent. 

ZUSAMMENFASSUNG- - -  Bei den meisten Festphasenreaktionen kann die Reaktionsgeschwindig- 
keit als Produkt zweier Funktionen, K(T) und f(1 --~) beschrieben werden, wobei T die 
Temperatur und ~ den Konversionsgrad des festen Reaktionspartners bedeuten. Die physi- 
kalische Deutung dieser Funktionen wird diskutiert und eine systematische Methode beschrie- 
ben, durch welche f ( 1 -  ~) einer aus ihren kinetischen Angaben bestimmt werden kann. 
Danach werden K(T) und der Reaktionsmechanismus bestimmt. Diese Methode wurde mit 
Erfolg zur Analyse der Kinetik der thermischen Zersetzung yon Silberazid eingesetzt. 
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Pe3IoMe - -  ~Ji~t 60JIl, mnltCTBa TBepAoTeJII, HbIX p e a r t u ~  CKOpOCTI, peaKi~rm MO>KeT 6blTl, omlcaHa  
XaK i lpOa3Be~erme ~ByX qbyrtKIIrI~ K ( T ) t I  f ( 1 - - ~ ) ,  r ~ e  T -  TeMiiepaTypa,  e - -  CTenerllo npeBpa-  
meHn~ TBep)Ioro peareI~Ta. O 6 c y x ~ e n a  qbHai~iecxa~ mtTeprrpeTaur la  9TrlX ~oyHralI~ rt OmlCaa 
CtlCTeMaT~ItleCK~ MeTO~, C IIOMOIIIr5IO KOTOp0ro ~yHIO/II~I f ( 1 - - ~ )  p e a r l m ~  MO)KeT 6BITIa ycTa- 
HOBaeHa H3 ee KI/IHeTI'ItteCKHX ~aHHbIX. YiocJIe 3TOFO MOYKeT 6t~ITI, orlpe~eJieHa ~yHKIIB~ / ( ( T )  
n peaKimOHm, I~ MexaHH3M. MeTO~ 6SI~I y c n e m a o  ttcnoYtb3OBaH ~JIa a r l aa r i3a  KHHeTnlCa~ TepMH- 

HeCKOFO paB3"IOXeHHH a 3 n ~ a  cepe6pa. 
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